Certificate in Deep Learning for QA: Core Principles
-- ViewingNowThe Certificate in Deep Learning for QA: Core Principles is a comprehensive course that equips learners with essential skills for career advancement in the rapidly evolving field of deep learning and quality assurance. This program covers the core principles of deep learning, neural networks, and their applications in QA.
6 919+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ร propos de ce cours
100% en ligne
Apprenez de n'importe oรน
Certificat partageable
Ajoutez ร votre profil LinkedIn
2 mois pour terminer
ร 2-3 heures par semaine
Commencez ร tout moment
Aucune pรฉriode d'attente
Dรฉtails du cours
โข Introduction to Deep Learning: Understanding the basics of deep learning, its applications, and the differences between traditional machine learning and deep learning algorithms.
โข Neural Networks: Learning about artificial neural networks, including perceptrons, multilayer perceptrons, and backpropagation.
โข Convolutional Neural Networks (CNNs): Diving into the structure, components, and use cases of CNNs, focusing on image recognition and classification.
โข Recurrent Neural Networks (RNNs): Exploring RNNs and their ability to handle sequential data, such as time series, natural language processing, and speech recognition.
โข Deep Learning Frameworks: Getting hands-on experience with popular deep learning frameworks like TensorFlow, Keras, PyTorch, and Theano.
โข Hyperparameter Tuning: Optimizing deep learning models by fine-tuning hyperparameters, such as learning rates, batch sizes, and regularization techniques.
โข Transfer Learning and Fine-Tuning: Leveraging pre-trained models for transfer learning and fine-tuning, allowing for faster development and improved performance.
โข Evaluation Metrics for Deep Learning: Measuring the performance of deep learning models using appropriate evaluation metrics, such as accuracy, precision, recall, and F1 score.
โข Ethical Considerations in Deep Learning: Examining ethical concerns related to deep learning, such as bias, privacy, and fairness.
โข Applications of Deep Learning in QA: Applying deep learning concepts and techniques in quality assurance, including anomaly detection, predictive maintenance, and computer vision tasks.
Parcours professionnel
Exigences d'admission
- Comprรฉhension de base de la matiรจre
- Maรฎtrise de la langue anglaise
- Accรจs ร l'ordinateur et ร Internet
- Compรฉtences informatiques de base
- Dรฉvouement pour terminer le cours
Aucune qualification formelle prรฉalable requise. Cours conรงu pour l'accessibilitรฉ.
Statut du cours
Ce cours fournit des connaissances et des compรฉtences pratiques pour le dรฉveloppement professionnel. Il est :
- Non accrรฉditรฉ par un organisme reconnu
- Non rรฉglementรฉ par une institution autorisรฉe
- Complรฉmentaire aux qualifications formelles
Vous recevrez un certificat de rรฉussite en terminant avec succรจs le cours.
Pourquoi les gens nous choisissent pour leur carriรจre
Chargement des avis...
Questions frรฉquemment posรฉes
Frais de cours
- 3-4 heures par semaine
- Livraison anticipรฉe du certificat
- Inscription ouverte - commencez quand vous voulez
- 2-3 heures par semaine
- Livraison rรฉguliรจre du certificat
- Inscription ouverte - commencez quand vous voulez
- Accรจs complet au cours
- Certificat numรฉrique
- Supports de cours
Obtenir des informations sur le cours
Payer en tant qu'entreprise
Demandez une facture pour que votre entreprise paie ce cours.
Payer par FactureObtenir un certificat de carriรจre