Certificate in Deep Learning for QA: Core Principles
-- viendo ahoraThe Certificate in Deep Learning for QA: Core Principles is a comprehensive course that equips learners with essential skills for career advancement in the rapidly evolving field of deep learning and quality assurance. This program covers the core principles of deep learning, neural networks, and their applications in QA.
6.919+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
Acerca de este curso
HundredPercentOnline
LearnFromAnywhere
ShareableCertificate
AddToLinkedIn
TwoMonthsToComplete
AtTwoThreeHoursAWeek
StartAnytime
Sin perรญodo de espera
Detalles del Curso
โข Introduction to Deep Learning: Understanding the basics of deep learning, its applications, and the differences between traditional machine learning and deep learning algorithms.
โข Neural Networks: Learning about artificial neural networks, including perceptrons, multilayer perceptrons, and backpropagation.
โข Convolutional Neural Networks (CNNs): Diving into the structure, components, and use cases of CNNs, focusing on image recognition and classification.
โข Recurrent Neural Networks (RNNs): Exploring RNNs and their ability to handle sequential data, such as time series, natural language processing, and speech recognition.
โข Deep Learning Frameworks: Getting hands-on experience with popular deep learning frameworks like TensorFlow, Keras, PyTorch, and Theano.
โข Hyperparameter Tuning: Optimizing deep learning models by fine-tuning hyperparameters, such as learning rates, batch sizes, and regularization techniques.
โข Transfer Learning and Fine-Tuning: Leveraging pre-trained models for transfer learning and fine-tuning, allowing for faster development and improved performance.
โข Evaluation Metrics for Deep Learning: Measuring the performance of deep learning models using appropriate evaluation metrics, such as accuracy, precision, recall, and F1 score.
โข Ethical Considerations in Deep Learning: Examining ethical concerns related to deep learning, such as bias, privacy, and fairness.
โข Applications of Deep Learning in QA: Applying deep learning concepts and techniques in quality assurance, including anomaly detection, predictive maintenance, and computer vision tasks.
Trayectoria Profesional
Requisitos de Entrada
- Comprensiรณn bรกsica de la materia
- Competencia en idioma inglรฉs
- Acceso a computadora e internet
- Habilidades bรกsicas de computadora
- Dedicaciรณn para completar el curso
No se requieren calificaciones formales previas. El curso estรก diseรฑado para la accesibilidad.
Estado del Curso
Este curso proporciona conocimientos y habilidades prรกcticas para el desarrollo profesional. Es:
- No acreditado por un organismo reconocido
- No regulado por una instituciรณn autorizada
- Complementario a las calificaciones formales
Recibirรกs un certificado de finalizaciรณn al completar exitosamente el curso.
Por quรฉ la gente nos elige para su carrera
Cargando reseรฑas...
Preguntas Frecuentes
Tarifa del curso
- 3-4 horas por semana
- Entrega temprana del certificado
- Inscripciรณn abierta - comienza cuando quieras
- 2-3 horas por semana
- Entrega regular del certificado
- Inscripciรณn abierta - comienza cuando quieras
- Acceso completo al curso
- Certificado digital
- Materiales del curso
Obtener informaciรณn del curso
Obtener un certificado de carrera